

1

Progress report

Thermomechanical fatigue of Boeing 60-NiTi

Dr. Dimitris Lagoudas Olivier Bertacchini

7/13/2007

Progress overview

- One 60-NiTi specimen left to be tested: end of scoping experiment
- Scoping experiment presents to few data with not enough differences between the two set of heat treatment to decide which HT is better

Summary of scoping experiment

Two additional test are performed under 200MPa, one is still running at 13000 cycles so far, one is to be completed by next week

Run order	Specimen #	Heat treatment	Thickness (mils)	Applied stress (MPa)	
1	SP# 6 HT2	A2	10	226	
2	SP# 4 HT2	A2	5	107	
3	SP# 3 HT1	A1	5	204	
4	SP# 7 HT1	A1	15	243	
5	SP# 5 HT2	A2	5	103	
6	SP# 5 HT1	A1	10	90	
7	SP# 3 HT2	A2	15	142	
8	SP# 7 HT2	A2	5	250	
9	SP# 2 HT1	A1	10	250	
10	SP# 4 HT1	A1	15	203	
11	SP# 2 HT2	A2	15	199	
Heat Treatments		A1	1 hr @ 850°C, 1 hr @ 450°C		
		A2	1 hr @ 850°C, 20 hrs @ 450°C		

Last two specimens to be tested under ~200MPa stress level

Run Order #8 and #9

 Thin specimens display better stabilization whereas thick specimens have tendency to show creep like behavior

Recoverable strain is stable in all cases

<u>Stress – life: first results</u>

Stress - Life: Heat treatment #1 vs. Heat treatment #2

 Not enough fatigue data to draw conclusions on the performances of the two different heat treatments

Plastic strain: first results

- Saturated plastic strain values at failure do not show trend in terms of amount of plastic strain related to the applied stress level
- However, the first observation we make is a higher plastic strain level attained for thicker specimens

Future work

- Analysis the failed specimens and their microstructure for better assessment of the differences between HT#1 and HT#2
- Reproduce tests with questionable results
- Equipment upgrade to be ready when next series of specimens is ready for fatigue testing

Experimental Setup (1)

Uniaxial isobaric fatigue testing for SMA actuators under constant applied load

- Thermally induced transformation cycles
- Constant load
- Complete and partial phase transformation cycles

Experimental Setup (2)

- Thermal actuation:
 - Resistive heating in SMA specimens using DC power supply
 - Cooling is achieved using forced convection of a waterless coolant (ethylene and propylene glycol)

Labview control program

The temperature and displacement is monitored real-time to assess onset and end of transformation

Fatigue Test	Applied stress			
Heat treatment	Cross section (mils ²)	50 MPa	150 MPa	250 MPa
1 hr.@ 850 C furnace cool,	50 x 5	6	6	6
1 hr.@ 450 C water quenched	50 x 15	6	6	6
1 hr.@ 850 C furnace cool,	50 x 5	6	6	6
20 hrs.@ 450 C water quenched	50 x 15	6	6	6

Specimens and Clamping

 Specimens are cut into thin dogbones with corner radii to remove stress concentration at the grips

 Grips designed to allow testing for dogbone specimens

Zero stress

transformation temperatures (1)

A differential scanning calorimeter (DSC) was utilized to identify the transformation temperatures of 60-NiTi specimens, for the two different heat treatments.

Recall - HT#1: 1hr @ 850°C, furnace cool to room temperature 1hr @ 450°C, water quenched

- HT#2: 1hr @ 850°C, furnace cool to room temperature 20hrs @ 450°C, water quenched

Quasi-static isobaric hysteresis loop (2) Texas A&M University

• HT#1 results show wider martensitic phase transformation region resulting in gradual transformation with little non recoverable strain while HT#2 displays narrower martensitic phase transformation region with in this case significant non recoverable strain under 250MPa constant stress.

