

Department of Mechanical Engineering

Effects of Severe Plastic Deformation and Sc Addition on the Recoverability of TiNiPd High Temperature Shape Memory Alloys

Kadri C. Atli^{a*}, Ibrahim Karaman^a Parikshith K. Kumar^b, Dimitris C. Lagoudas^b

^aTexas A&M University, Department of Mechanical Engineering, College Station TX, USA ^bTexas A&M University, Department of Aerospace Engineering, College Station TX, USA

Acknowledgement: NASA Glenn Research Center

Outline

Texas A&M University

- Challenges
- Objectives
- Materials Processing
- Experimental Results
 - Material Characterization
 - Thermo-mechanical Testing
- Conclusion
- Future Work

Challenges

Texas A&M University

Department of Mechanical Engineering

Long term stability

- Microstructure (recovery, recrystallization)
- Phase structure (decomposition)
- Resistance to oxidation

Plasticity

• Resistance to dislocation slip (ease of dislocation motion and decrease in the critical stress for slip)

thus the internal strain

Materials Processing

Texas A&M University

Department of Mechanical Engineering

1. Vacuum induction melting of elemental constituents (Ni, Ti, Pd, Sc)

 Homogenization of ingots at 1050℃ for 72 hours

3. Extrusion at 900℃ with an area reduction ratio of 7:1

5. Preparation of microtensile specimens from the as-extruded and ECAE'ed billet by electrical discharge machining (EDM)

4. Severe plastic deformation of the as-extruded billet via ECAE

As-extruded Billet

Department of Mechanical Engineering

Experimental Results

Part I

Addition of 0.5% Sc to the as-extruded $Ti_{50.5}Ni_{24.5}Pd_{25}$ $Ti_{50.5}Ni_{24.5}Pd_{25} \rightarrow Ti_{50}Ni_{24.5}Pd_{25}Sc_{0.5}$

Texas A&M University

Grain size $\approx 5 - 15\mu m$ (Avg. 10 μm) Volume fraction of precipitates $\approx 3.4\%$ Average particle size $\approx 1.48\pm0.58\mu m$

Grain size $\approx 5 - 10\mu m$ (Avg. 7 μm) Volume fraction of precipitates $\approx 1.4\%$ Average particle size $\approx 0.94 \pm 0.44\mu m$

Texas A&M University

Department of Mechanical Engineering

Glen Bigelow, M.S. Thesis GRAY PHASE Ti₂(Ni,Pd)

Barely visible gray phases. Hard to define the composition with EDS.

Matrix Composition from WDS Analysis

	Ti	Ni	Pd
at. %	49.62	24.42	25.96
	±0.5	±0.25	±0.25

Texas A&M University

Texas A&M University

Department of Mechanical Engineering

1℃ peak shift per cycle after the 2nd cycle. 0.6℃ peak shift per cycle after the 2nd cycle.

Texas A&M University

Texas A&M University

Department of Mechanical Engineering

Addition of the quaternary element Sc:

- Decreases the amount of accumulated irrecoverable strain
- Decreases the thermal hysteresis
- Slightly decreases the transformation strain levels

Department of Mechanical Engineering

Experimental Results

Part II ECAE of TiNiPd₂₅Sc_{0.5} Heat Treatment of ECAE'ed TiNiPd₂₅Sc_{0.5}

Department of Mechanical Engineering

ECAE Conditions

- 4E 425℃ for Ti ₅₀Ni_{24.5}Pd₂₅Sc_{0.5}
- 4E 425°C for Ti 49.5Ni25Pd25Sc0.5

Heat Treatment

300℃, 1 hour followed by air cooling

Texas A&M University

- > Nano sized (150-200 nm) grains due to heavy deformation
- ➢ B19' martensite structure

Texas A&M University

Department of Mechanical Engineering

0.6℃ peak shift per cycle after the 2nd cycle. No peak shift per cycle after the 2nd cycle.

Texas A&M University

Texas A&M University

Department of Mechanical Engineering

Composition: $Ti_{49.5}Ni_{25}Pd_{25}Sc_{0.5}$

- ECAE depresses the transformation temperatures
- > ECAE decreases the amount of accumulated irrecoverable strain
- ➤ Heat treatment after ECAE increases the transformation temperatures and improves the strain output beyond that of the as-extruded material for a given stress level.

Conclusions

Texas A&M University

Department of Mechanical Engineering

Quaternary addition of Sc improved the shape memory properties of TiNiPd by improving thermal and mechanical cyclic stability.

➢ Quaternary addition of Sc changed the structure of martensite from B19 to B19'.

ECAE followed by heat treatment further improved the shape memory properties of TiNiPdSc.

 \succ Both methods can eliminate the necessity of costly and long training cycles before the HTSMA is used in an application.

Future Work

Texas A&M University

- Addition of different levels of Sc
- Different ECAE routes and heat treatments
- Isobaric thermal cyclic tests

Department of Mechanical Engineering

Thank you!

Appendix

Texas A&M University

Element	Atomic Number	Atomic weight (g/mol)	Density	Melting Point (℃)	Crystal Structure	Bond Length (pm)	Atomic radius (pm)	E (GPa)	G (GPa)	Hardness (B)
Titanium	22	47,867	4,506	1668	HCP	289,6	140	116	44	716
Nickel	28	58,693	8,908	1455	FCC	249,2	135	200	76	700
Palladium	46	106,42	12,023	1555	FCC	275,1	140	121	44	373 ?
Scandium	21	44,955	2,985	1541	НСР	321,2	160	74,4	29,1	750