

Review

Thermomechanical fatigue of Boeing 60-NiTi

Dr. Dimitris Lagoudas Graduate student: Olivier Bertacchini Undergraduate student: Justin Schick

9/14/2007

Fatigue behavior evaluation of SMA bending components in opposition to elastic composite structure of complex geometry

Fatigue in Aircraft

 Fatigue failure corresponds to approximately 80 percent of failures of components during a service life

- Boeing flight cycles design limits usually between 20000 and 75000 cycles
- Localization of fatigue: weak section, high loads, large strains
- How does the FAA set fatigue criteria? Any safety factor?
- How is fatigue assessed? Is crack propagation accepted and monitored?

In the context of the future application of the Variable Geometry Chevrons, the thermomechanical fatigue behavior of the SMA beams providing actuation to the chevrons has to be addressed.

 Identification of the loading conditions of the SMA components led to the definition of a series of uniaxial isobaric thermally induced fatigue tests.

Experimental Setup (1)

In the context of the future application of the Variable Geometry Chevrons, the thermomechanical fatigue behavior of the SMA beams providing actuation to the chevrons has to be addressed.

 Identification of the loading conditions of the SMA components led to the definition of a series of uniaxial isobaric thermally induced fatigue tests.

Experimental Setup (2)

Uniaxial isobaric fatigue testing for SMA actuators under constant applied load

- Thermally induced transformation cycles
- Constant load
- Complete and partial phase transformation cycles

Experimental Setup (3)

- Thermal actuation:
 - Resistive heating in SMA specimens using DC power supply
 - Cooling is achieved using forced convection of a waterless coolant (ethylene and propylene glycol)

Experimental Setup (4)

 Capacity to provide resistive heating and active cooling with forced fluid convection (waterless coolant)

 Thermal loading cycles are achieved at a frequency close to 0.2Hz

The relatively elevated cycling frequency doesn't allow generation of hysteresis loops in a quasi-static sense. The advantage of such design is the capacity to produce thermomechanical fatigue data in 48 to 72 hours.

• Measurement of displacement of SMA actuators is recorded through LVDT transducers and strains in the austenitic and martensitic state are used to define total, plastic and recoverable strains.

Different parameters

In order to develop and use 60-NiTi SMA at its full capacity, thermomechanical fatigue testing will be achieved with different parameters allowing to identify:

- The average fatigue life of 60-NiTi SMA actuators
- The optimum set of parameters to generate an optimized a fatigue response

The different parameters are:

- Heat treatment
- Specimen thickness
- Applied constant stress level

Fatigue Test Matrix		Applied stress		
Heat treatment	Cross section (mils ²)	50 MPa	150 MPa	250 MPa
1 hr.@ 850 C furnace cool,	50 x 5	6	6	6
1 hr.@ 450 C water quenched	50 x 15	6	6	6
1 hr.@ 850 C furnace cool, 24 hrs.@ 450 C water quenched	50 x 5	6	6	6
	50 x 15	6	6	6

Specimens and Clamping

 Specimens are cut into thin dogbones with corner radii to remove stress concentration at the grips

 Grips designed to allow testing for dogbone specimens

Specimen details (1)

Run order	Specimen #	Heat treatment	Thickness (mils)	Applied stress (MPa)	
1	SP# 6 HT2	A2	10	226	
2	SP# 4 HT2	A2	5	107	
3	SP# 3 HT1	A1	5	204	
4	SP# 7 HT1	A1	15	243	
5	SP# 5 HT2	A2	5	103	
6	SP# 5 HT1	A1	10	90	
7	SP# 3 HT2	A2	15	142	
8	SP# 7 HT2	A2	5	250	
9	SP#2 HT1	A1	10	250	
10	SP# 4 HT1	A1	15	203	
Heat Treatments		A1	1 hr @ 850 C, 1 hr @ 450 C		
		A2	1 hr @ 850 C, 20 hrs @ 450 C		

SP# 1 HT1	Damaged during preliminary testing		
SP# 1 HT2	Damaged during preliminary testing		
SP# 2 HT2	Not applicable for isobaric uniaxial fatigue testing		
	irregular cross section with major notches		
SP# 6 HT1	MTS tested		
SP# 8 HT2	MTS tested		
SP# 5 HT1	No failure (run out at ~60K cycles)		
SP# 5 HT2	No failure (run out at ~60K cycles)		
SP# 4 HT1	Invalid results (computer malfunction)		

Specimen details (2)

Run order	Specimen #	Heat treatment	Thickness (mils)	Applied stress (MPa)		
11	SP# 8 HT1	A1	10	100]	To be tested
12	SP# 9 HT1	A1	15	100] •	Tested
13	SP# 10 HT1	A1	5	100] •	
14	SP# 9 HT2	A2	10	100] ←───	Test in progress
15	SP# 10 HT2	A2	10	250] ←	Tested
Heat Treatments		A1	1 hr @ 850	C, 1 hr @ 450 C]	
		A2	1 hr @ 850 (C, 20 hrs @ 450 C]	

Fatigue Results Heat Treatment #1

Fatigue Results Heat Treatment #2

Strain - Life result for HT2 under 250MPa and 226MPa

Strain - Life: SP#9 HT2 -Thickness = 10 mils - 100 MPa

Cumulative results

<u>Stress – Life</u>

Plastic strain at failure

Future Work

After the test matrix is completed, each specimen will be characterized by:

- A number of cycles to failure
- The total accumulated plastic strain
- The stabilized recoverable strain
- A shift in transformation temperatures

The next step is an in depth microstructural analysis of the ruptured specimens to analyze and understand the mechanisms of failure in order to identify an optimum set of parameters.

One of the ultimate goals is to determine some fatigue failure criteria that could eventually be implemented in the currently used 3-D SMA constitutive model.